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SUMMARY

In this paper we compare the performance of a new general algorithm developed recently in application to
problems of high Mach number ¯ows with the performance of specialised algorithms applicable only to such
¯ows. It appears that the results for most examples compare well, the biggest difference occurring in that of high
Mach number compression corner. # 1998 John Wiley & Sons, Ltd.

Int. J. Numer. Meth. Fluids, 27: 57±80 (1998)

KEY WORDS: high speed ¯ow; shock modelling; numerical method; computational ¯uid dynamics

1. INTRODUCTION

With the advent of powerful computers, numerical modelling of ¯uid ¯ow problems has emerged as a

viable alternative to both experimentation and analytical solutions. However, to make computer

simulations more widely acceptable and reliable, there is a continuing demand for the development of

solution algorithms which can deal with complex ¯ow phenomena in two and three dimensions and

offer a high degree of accuracy, robustness and versatility. Any general method in computational

¯uid dynamics (CFD) has to ideally possess the capabilities of simulating the main ¯ow features such

as the values of velocity, pressure and density and predicting the viscous tractions in the presence of

complicated geometries. Thus CFD algorithms have to be able to deal with the Navier±Stokes

equations which govern the conservation of mass, momentum and energy of a viscous, heat-

conducting and time-dependent ¯ow. A simpler approximation of this general ¯ow situation is

possible by making the assumption that signi®cant viscous effects and conduction effects are present

only near the surface of the body and that the bulk of the ¯ow is predominantly inviscid. From

Prandtl's boundary layer analysis this is a valid approximation for attached ¯ows at high Reynolds

numbers away from the vicinity of solid surfaces. We then arrive at the so-called Euler equations.

This approximation introduces signi®cant changes in mathematical formulation as the system of

partial differential equations describing the inviscid ¯ow model reduces from second- to ®rst-degree.
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Thus the starting point for most of the numerical schemes for compressible ¯ow simulation are the

time-dependent Euler or Navier±Stokes equations written in a conservation form. The advantages of

considering unsteady state equations are twofold. One is that the transient behaviour can be modelled

and the other is that the time-stepping formulation can be used as a relaxation or iterative process of

reaching the solution for non-linear steady state problems. Writing the equations in the conservation

form and preserving this form in the discretization allows us to obtain the correct jump relations at

discontinuities.1

The most general choice for the discretization of the ¯uid ¯ow equations is the ®nite element

method (FEM), with the ®nite volume method (FVM) and the ®nite difference method (FDM) being

its particular and non-optimal forms. Even though the FDM is traditionally the most popular choice in

view of its long history and simplicity of use on uniform meshes, it suffers from the disadvantage that

it is not readily applicable to irregular meshes and has a lower accuracy. The FVM, on the other hand,

is quite ¯exible and can readily be used on arbitrary meshes. Its greatest advantage is that in the

integral form the conservation laws are directly discretized, which ensures that the basic quantities,

namely mass, momentum and energy, are apparent at the discrete level, but this, limits its use to the

lowest (linear) type of spatial approximation. However, the FEM is the most general discretization

method and, of course, is equally conservative. Like the FVM, it can be applied to arbitrary meshes

and complex geometries. Further, it has the ability to incorporate gradient-type boundary conditions

naturally and the ability to adapt the discretization based on the error in the approximate solution by

means of mesh re®nement, mesh movement or increasing the order of interpolation functions. Thus

the FEM plays a signi®cant role in the present-day CFD scenario.

The early part of the history of CFD has been dominated by structured mesh methodologies in view

of their straightforward implementation, limited bandwidth, ability to produce computer codes for

multidimensional analysis and ease of interchange of information among various grids for multigrid

strategies. However, in the last decade there has been evidence of a move from structured to

unstructured methodologies. Unstructured grids can be produced much faster for complex

geometries, though they present such disadvantages as large memory requirement and possibly

increased computational costs. However, the ability of unstructured meshes to resolve very-small-

scale ¯ow features in complex domains and their suitability for adaptive re®nement have attracted

both the ®nite element and ®nite volume followers to the use and development of unstructured mesh

methodologies. This has also been made possible by the developments achieved in unstructured mesh

generation, adaptivity, multigrid acceleration procedures and, more recently, computer architecture

features such as vectorization and parallelization.

In the subsequent sections we ®rst present the governing equations for compressible viscous ¯ows

and then describe some of the unstructured ®nite element algorithms developed in the recent past at

the Institute for Numerical Methods in Engineering, Swansea for high-speed ¯ow simulations. More

recently, signi®cant effort has been expended in two different directions towards achieving this

objective. A novel, general algorithm based on the characteristic Galerkin approach and operator

splitting has been developed that is suitable for both incompressible and compressible ¯ows. This has

been shown to give good results for a variety of problems involving fully incompressible as well as

subsonic and supersonic ¯ows. Simultaneously, a class of special purpose schemes based on the `¯ux

difference splitting' or Godunov method2 has been implemented to deal with transonic through

supersonic to hypersonic ¯ows and these are particularly suited to very-high-speed ¯ows with strong

shocks. We present a review of the above methodologies and then compare their performance for a

few hypersonic inviscid and viscous ¯ow problems.
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2. ESSENTIAL SUMMARY OF EQUATIONS

The full system of Navier±Stokes equations in non-dimensional form (and in conservative form) can

be represented as

@U

@t
� @Fi

@xi

� @Gi

@xi

: �1�

Here, in two dimensions,

UT � �r; ru1; ru2; rE� �2�
is the independent variable vector, where r is the density of the ¯uid, u1 and u2 are the velocity

components in the x- and y-directions respectively and E is the total energy of the ¯uid

FT
i � �rui; ru1ui � d1ip; ru2ui � d2ip; ui�rH�� �3�

is the convective ¯ux vector, where p is the pressure and H�E� p=r is the enthalpy of the ¯uid
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is the diffusive ¯ux vector, where Re is the Reynolds number of the ¯ow, Pr is the Prandtl number of

the ¯uid, T is the temperature, m is the dynamic viscosity of the ¯uid and tij are the shear stresses

given by

tij � m
@ui

@xj

� @uj

@xi

 !
ÿ 2

3
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@uk
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dij: �5�

The constitutive gas law is

p � �gÿ 1�r�E ÿ 0�5u2
i �: �6�

Finally the speed of sound c is related to r and p as

c2 � gp=r: �7�

3. FINITE ELEMENTS IN COMPRESSIBLE FLOW SIMULATION

Even though considerable success has been achieved with the FEM for elliptic and parabolic

problems, it is only in the last 15 years that it has attracted the attention of CFD developers for

solving hyperbolic and hyperbolic-dominated problems. As mentioned in Section 1, the ability of the

FEM to handle large complex geometries and differential boundary conditions in a natural way and

the ability to deal with unstructured meshes are amongst its advantages over the FDM. Further, the

developments in mesh generation capabilities,3±6 multigrid acceleration procedures7±9 and strategies

for adaptivity5,10 have led to the present-day progress in CFD in which full aircraft simulation11±14

has become a reality. This indeed was ®rst achieved through FEM codes.

The standard Galerkin method (which is similar to central differencing in the FDM) provides best

approximation when used for discretizing symmetric and self-adjoint operators but yields suboptimal

approximation for strongly convective equations. This often results in numerical procedures that are

not stable for practical meshes and time steps. These dif®culties were ®rst resolved by the

introduction of the Petrov±Galerkin formulation wherein the approximating shape functions are

modi®ed in such a way that the contribution of each element is not assigned evenly to each of its

nodes but is distributed by taking into account the direction of the ¯ow. This ®nite element equivalent
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of upwinding was ®rst introduced by Christie et al.15 and followed by others.16±19 Generalization to

multidimensions was ®rst carried out in Reference 16 but presented some `cross-wind diffusion'. This

dif®culty was overcome in somewhat different ways by Kelly et al.20 and Hughes and Brooks.21

However, these formulations were derived for steady state formulations and scalar equations and their

application to unsteady state systems of equations is not obvious.

The Taylor±Galerkin family of ®nite element methods for time-dependent equations was ®rst

introduced by Donea.22 This method is the ®nite element equivalent of the Lax±Wendroff method23

successfully used in the FDM. When applied to a system of ¯uid mechanics equations, it yields

reasonable results but suffers from the disadvantage of having to evaluate and store the Jacobian

matrices Ai every time step. This operation is quite time-consuming. The two-step Taylor±Galerkin

method,24 which can be considered the ®nite element equivalent of the two-step MacCormack

scheme,25 avoids this dif®culty by introducing an intermediate step. This method, while achieving the

same accuracy as the one-step Taylor±Galerkin method, is computationally faster (by approximately

a factor of three for 2D applications). Further developments of the Taylor±Galerkin method were

carried out by Hassan,26 who used an explicit=implicit method. This makes use of the alternating

direction implicit (ADI) algorithm near the solid surfaces with a structured mesh, while in the rest of

the domain an explicit method with an unstructured mesh is utilized. Even though the Taylor±

Galerkin method is systematic and easily generalizable to multidimensions, in its derivation there is

no obvious explanation as to why the standard Galerkin procedure is used and indeed effective for

spatial discretization.

The characteristic Galerkin method, ®rst introduced by LoÈhner et al.27 and in which the scalar

convection equation is transformed to a co-ordinate system along the characteristics, is fully justi®ed

theoretically. This process makes the convection equation self-adjoint along the characteristics and

thus justi®es the use of the Galerkin method for spatial discretization. However, for a scalar

convection±diffusion equation the Taylor±Galerkin and characteristic Galerkin methods are identical.

This justi®es the Taylor±Galerkin method only for scalar variables and its extension to the full ¯uid

equations often results in poor performance. It also suffers from another drawback. For instance, the

Taylor±Galerkin approximation with equal-order interpolation to the Euler or Navier±Stokes

equations fails as the compressibility tends to zero. This not only limits its range of application to

high-speed ¯ows but also affects the quality of high-speed compressible solutions in low-velocity

zones such as near stagnation points.

4. GENERAL ALGORITHM28

The search for a suitable remedy for the above-mentioned drawbacks has led to the development of a

general purpose algorithm that is designed to use the optimality of the Galerkin method for self-

adjoint equations and to be able to perform over a wide range of ¯ow situations ranging from fully

incompressible ¯ows through subsonic ¯ows to highly compressible ¯ows.

The philosophy behind this approach is to return to a single characteristic speed (for which the

procedures were proved) by means of a suitable operator-splitting procedure. The key to such a split

lies in a fractional step method devised originally by Chorin29 and subsequently used by others30±32 in

the incompressible ¯ow context. This method starts by obtaining an approximate velocity ®eld using

the momentum equation with the pressure gradients omitted. This step is followed by solving for the

unknown pressure on inserting the velocity approximation into the continuity equation. The ®nal

stage is the correction of the velocity vector using the computed pressure terms. This method thus

essentially separates the pressure calculation into one involving a Laplacian form which is self-

adjoint and only a single characteristic velocity is involved in the ®rst stage.
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When the transient form is used for steady state results, another bene®t arises. When the steady

state equations for incompressible ¯ow are cast in terms of the primitive variables u and p, it can be

readily seen that the appearance of zero diagonal terms renders the system singular unless the number

of velocity variables is greater than the number of pressure variables. This condition, also known as

the BabusÏka±Brezzi condition, restricts the use of equal-order interpolation for u and p. Introducing

an operator split as described above provides the remedy to this problem. The discrete steady state

equations do not have a zero diagonal term, but instead a term proportional to the time increment

appears and this allows arbitrary and convenient interpolations to be used for p and u. For instance, an

equal-order interpolation is possible avoiding the dif®culties frequently encountered in the use of

such interpolation with the previously mentioned Taylor±Galerkin procedure. Thus the essential step

of the new general algorithm is the realization that in each computational step the transport of a single

scalar quantity occurs and the application of characteristic Galerkin for each of these equations is

fully justi®ed. References 33±35 mark the various stages involved in the development of the general

algorithm which was ®nally available for the conservative form of variables with a split,

characteristic Galerkin approach.28

This scheme has been successfully applied in its explicit form to various subsonic and supersonic

¯ow problems36 and in semi-implicit form to various laminar=turbulent incompressible ¯ow

problems.37 With further re®nements in the prescription of boundary conditions38 the general

algorithm is applied (in what can be considered to be the ®nal form) in the present work to some high-

speed viscous and inviscid ¯ow problems and its performance compared with some of the special

purpose schemes to be discussed in the next section.

Following is a brief description of the steps involved in the split, characteristic formulation of the

above equations. Here the governing convection±diffusion equation is ®rst transformed into a co-

ordinate system along the characteristic trajectory. This renders the equation self-adjoint in the new

co-ordinate system for which the standard Galerkin discretization is optimal. However, this

introduces the inconvenience of a moving co-ordinate system. To avoid this dif®culty, a local

approximation can be used as suggested in Reference 27. We then follow the Chorin-type29 operator

splitting and proceed with the spatial discretization. The resulting approximation is valid for any

scalar convected quantity even if it is one of the components of the velocity u itself, as is the case

with the momentum conservation equations. Details of the characteristic approximation, operator

splitting and Galerkin discretization can be found in Reference 28, but the following are the important

steps involved.

Step 1

Solve for an intermediate velocity D(r~ui):
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using the characteristic Galerkin process, which introduces the term involving Dt.

Step 2

Solve for Dr (or DP in incompressible ¯ows):

Dr � ÿDt
@�rui�n
@xi

� y1
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@xi

ÿ Dty1

@2Pn�y2

@xi@xi

� �
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This equation is self-adjoint and hence the Galerkin process is optimal.
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Step 3

Correct the velocities:

D�rui�n�1 � D�r~ui� ÿ Dt
@Pn�y2

@xi

: �10�

Step 4

Calculate D(rE) as a transport quantity:
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The above algorithm can be used in a semi-implicit manner and indeed only in this form can fully

incompressible ¯ow problems (with M� 0) be solved. In this case the following typical values of y1

and y2 are taken:

1
2
4y1 4 1; 1

2
4y2 4 1:

This requires the solution of a system of equations in step 2 for pressure (or density). For the case of

nearly compressible and compressible ¯ows an explicit form of (9) can be derived by taking y2� 0.

It should be further mentioned that the above scheme, which is second-order-accurate in space and

time, requires some additional dissipation to deal with strong discontinuities. Two different methods

have been used in the present work. The ®rst of these is based on a pressure-switch-type arti®cial

viscosity method and has been used in all the examples considered in this work. This method is

described in some detail in the Appendix. The second is based on an anisotropic arti®cial diffusion

method as described in Reference 28. The application of this method in the present work is con®ned

to the case of supersonic ¯ow past a cylinder. Its implementation for the other cases is currently being

pursued.

5. SPECIAL PURPOSE SCHEMES BASED ON FLUX DIFFERENCE SPLITTING

In this section we consider the higher-order upwind schemes based on Godunov's approach2 and

developed in the context of the ®nite element method. At present, truly multidimensional upwind-

based schemes are still in the research stage. However, it is possible to extend the standard 1D

upwind methods based on Godunov's method2 to design multidimensional schemes.

The basic Godunov method solves over each mesh interval a locally one-dimensional shock tube

problem. This scheme introduces into the numerical discretization information from the exact, local,

non-linear solutions of the Euler equations. In this method there are three steps involved. In step 1 a

piecewise constant approximation of the solution over each cell is de®ned at time t. The spatial error

from this approximation over the cell size Dx will be of the order of Dx and hence the resulting

scheme will be ®rst-order. In step 2 a local Riemann problem is solved at the cell interfaces. The

exact solution of the Riemann problem is a unique function of the initial conditions and the ratio x=t,
where x is the distance along the cell. In step 3 a new piecewise constant approximation is obtained

by averaging the state variables after a time step Dt. Since in the whole method only step 2 is the

physical step and is independent of steps 1 and 3 which are projection steps, it is possible to replace

the piecewise constant approximation by a linear variation, resulting in a second-order space-accurate

scheme of Van Leer.39
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The exact solution of the Riemann problem in step 2 involves the solution of a non-linear algebraic

equation and is quite time-consuming. This has led to the development of some well-known

approximate Riemann solvers such as those of Roe40 and Osher and Soloman.41 However, the

second-order upwind schemes are still not totally free from oscillations near discontinuities. Certain

conditions were found to be necessary for non-oscillatory properties of these schemes. These are

monotonicity, a concept introduced by Godunov,2 monotonicity preserving,42 total variation

diminishing (TVD) introduced by Harten43,44 and local extremum diminishing (LED) introduced by

Jameson.45 The utilization of these concepts has led to the development of a class of second-order

schemes called `high-resolution schemes' that provide non-oscillatory solutions. Very recently, ®nite

element implementation of some high-resolution schemes has been carried out by Lyra46 based on the

TVD concept and by Manzari47 based on the monotone upstream-centred scheme for conservation

laws (MUSCL). (See also References 48±50.) These two schemes, using an edge-based data

structure, are among the ®rst of the ®nite element methods to utilize physical information in the

discretization and yield excellent results especially for hypersonic ¯ows.

5.1. MUSCL scheme47

After applying the Galerkin approximation to the Navier±Stokes equations, the discretization of the

inviscid ¯uxes requires special care. It was shown by Peraire and PeiroÂ14 that the contribution of the

inviscid ¯uxes to the ®nite element approximation can be related to an actual ¯ux de®ned as

FIIS
� 1

2
�Fj
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j
IIS
� F

j
IS
sj

IIS
� �12�

for interior nodes. Here sj
IIS

is the component in the j-direction of a geometry-dependent unit vector

computed for edge IIS.

To construct a practical numerical scheme, we invoke Roe's ¯ux-difference-splitting method,40

which replaces the actual ¯ux by the consistent numerical ¯ux

ffIIS
� 1

2
�Fj
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j
IIS
� F

j
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IIS
ÿ jAIIS

j�UIS
ÿ UI��; �13�

where the Jacobian matrix AIIS
is computed in the direction of SIIS

� �s1
IIS
; s2

IIS
� from the so-called

Roe average values as

AIIS
� A�UI; UIS

� � sj
IIS

dFj

dU

� �
IIS

: �14�

However, this leads to a ®rst-order upwind scheme which is too dissipative. A high-resolution scheme

can be devised by using the MUSCL concept. In the context of the MUSCL algorithm the numerical

¯ux for the inviscid ¯ux contributions is rewritten as

ffIIS
� 1

2
�Fj�UL�sj

IIS
� Fj�UR�sj

IIS
ÿ jAIIS

j�UR ÿ UL��; �15�
where UR and UL are the interface values of the conservative variables for edge IIS. The interface

values of the primitive variables Z are obtained according to

ZL
IIS
� ZI � 1

2
i�ZIS

ÿ ZI; ZI ÿ ZIL
�; ZR

IIS
� ZIS

ÿ 1
2
i�ZIS

ÿ Zi; ZIR
ÿ ZIS
�; �16�

where i represents the interpolation function. In this work a function proposed by Thomas51 is used:

i�x; y� � x�y2 � 2e2� � y�2x2 � e2�
2x2 ÿ xy� 2y2 � 3e2

: �17�

Here e2 is a small constant. More details about this scheme can be found in Reference 47.
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5.2. Symmetric TVD scheme46

A ®nite element TVD scheme may be obtained by adopting the numerical ¯ux function

corresponding to the TVD formulation of the 1D Lax±Wendroff scheme (LW=TVD)52 as

ffIIS
� 1

2
f�Fj

Is
j
IIS
� F

j
IS
sj

IIS
� ÿ RIIS

�l��LIIS
�2Q̂IIS

� jLIIS
j�DIIS

Wÿ Q̂IIS
��g; �18�

where l*�DtS=LS, with LS denoting the length of edge IIS, DtS the local time step and

DIIS
W � Rÿ1

IIS
DIIS

U � Rÿ1
IIS
�UIS
ÿ UI�: �19�

Here R and Rÿ1 denote the matrices whose columns are the right and left eigenvectors of the

Jacobian matrix A respectively, L is the diagonal matrix which contains the eigenvalues of A and

Q̂IIS
is a vector of limited characteristic variations. The resulting scheme is a symmetric TVD scheme,

as upwinding is introduced only in the presence of the limiter and in the direction of the vector SIIS
.

As in the case of the MUSCL scheme, the approximate Riemann solver of Roe40 is employed to

resolve the interface between the two different ¯uid states.

The limited variations Q̂IIS
are computed by making use of a locally structured stencil. Component

l of the vector, Q̂IIS
, is computed using the characteristic variables and is determined from either an

upwind-biased stencil or a symmetric stencil. For example, for Lk
IIS
> 0 the limiter is de®ned to be

either

Q̂l
IIS
� minmod�DIIS

Wl; bDILIW
l� �20�

or

Q̂l
IIS
� minmod�bDILIW

l; DIIS
Wl; bDISIR

Wl�: �21�
In these expressions the superscript l denotes the lth characteristic ®eld and b is a parameter which

makes the limiter more compressive, with 1 4 b 4 2 for fully explicit schemes. The minmod

function returns the value zero if any of its arguments are of opposite sign and the smallest argument

in absolute value if the arguments are all of the same sign.

As only steady state computations are of interest here, we drop the Lax±Wendroff term, as

suggested by Yee,52 from the numerical ¯ux described in (18), i.e. l* is set equal to zero. For a very

comprehensive discussion on the development of high-resolution schemes in the ®nite element

framework see Reference 46.

The standard Galerkin method is applied to the viscous ¯uxes in the same way as for the inviscid

¯uxes. The functional dependence of the viscous ¯uxes upon the gradients of the primitive variables

makes their approximation more prone to error. The most accurate way of computing the viscous ¯ux

contributions is to apply ®nite element approximation to each term in its expansion separately.

However, it was shown by Peraire et al.53 that this is not necessary and, in the context of an edge-

based data structure, an approximation similar to what is used for the inviscid ¯uxes works well also

for the viscous ¯uxes. This simpli®cation has a signi®cant bene®t in terms of CPU time and memory

requirements.

6. COMPARISON EXERCISE

The following test cases have been used to judge the performance of the general scheme28 against the

special purpose schemes46,47 in different ¯ow situations, namely supersonic=hypersonic and

inviscid=viscous. However, all the viscous ¯ow analyses are con®ned to laminar ¯ow problems only.
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6.1. Inviscid supersonic ¯ow past a cylinder

The ®rst of the test cases is the inviscid ¯ow past a cylinder at Mach 3. This is a challenging test

case in the sense of stability, as it involves the presence of sonic, stagnation and rarefaction zones.

The mesh used is an adapted mesh obtained from an initial coarser mesh. Details of the initial mesh

for this as well as other problems are available in Reference 46. The adapted mesh consists of 12,651

nodes and 24,979 linear triangular elements and is shown in Figure 1(a). The Mach contours are

Figure 1. Inviscid ¯ow past a cylinder, M� 3: (a) adapted mesh (12,651 nodes 24,979 elements); (b) Mach contours with
MUSCL; (c) Mash contours with general algorithm (pressure-switch-type arti®cial viscosity64); (d) Mach contours with general

algorithm (anisotropic arti®cial viscosity28)
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presented for the MUSCL scheme in Figure 1(b). The Mach contours with the TVD scheme are very

similar to those obtained with the MUSCL scheme and hence are not shown here. The Mach contours

with the general scheme using the pressure-switch-type arti®cial viscosity are shown in Figure 1(c).

Signi®cant differences could be observed in the contours obtained with the general scheme and the

MUSCL approach, especially in the quasi-rarefaction zone behind the cylinder where weak shocks

are present. However, the bow shock in front of the cylinder appears to be represented by both

methods in a similar fashion. To further study the performance of the general scheme, the anisotropic

arti®cial diffusion method has been implemented for shock capturing and the resulting Mach contours

are shown in Figure 1(d). These contours agree more closely with the MUSCL approach in the

rarefaction zone than those with the pressure switch method. Based on these promising results,

Figure 2. Inviscid ¯ow past a cylinder, M� 3: comparison of (a) pressure coef®cient and (b) Mach number variation along
horizontal centre line and on cylinder surface
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further work is currently in progress on its implementation. A comparison of the variation in

coef®cient of pressure and Mach number along the horizontal centre line of the geometry and on the

surface of the cylinder is presented in Figures 2(a) and 2(b). There is very good agreement among the

three schemes (i.e. MUSCL, G=TVD and the general scheme) with respect to Cp. From Figure 2(b) it

can be observed that the sharp drop in Mach number through the bow shock in front of the cylinder,

the acceleration over the cylinder wall and the subsequent drop in M are captured equally well by all

three methods. However, behind the cylinder there is disagreement among the three methods, with

each method exhibiting different behaviour in the rarefaction zone.

The important considerations for this problem to produce a converged solution are the use of

entropy correction and preventing the pressure from becoming negative behind the cylinder. While an

entropy ®x parameter is used in both the MUSCL and TVD schemes, no such parameter has been

used in the general scheme. As a result the drop in the L2-norm of the density residual is less for the

general scheme by an order of 10ÿ1±10ÿ2 as compared with the MUSCL and TVD schemes for all

the problems considered in this work. Further, the reduction in the pressure to values very close to

zero behind the cylinder leads to negative values during the initial stages of the transient behaviour.

To prevent this from occurring, the procedure suggested by Thomas51 is used with both the general

and special purpose methods, which updates the thermodynamic variables according to the formula

fN�1 � fn � Df if Df=fn0�2;
fn � Df=�1�2��2� jDf=fnj�� if df=fn0�2:

�
�22�

6.2. Shock interaction on a cylinder

This problem involves the interaction of two inviscid transonic ¯ows past a cylinder and hence is a

more severe test case than the previous one. The mainstream Mach number is 15 and the disturbed

stream Mach number is 10�596 at an angle of 6�. A schematic diagram of the ¯ow and the geometry is

shown in Figure 3(a). This represents a situation in which an oblique shock interacts with the bow

shock in front of the cylinder. The initial mesh for this problem consists of 1703 nodes and 3217

elements. In order to resolve the interaction region properly, a very ®ne mesh is needed. The ®nal

mesh after four adaptations is used in the present work for comparison purposes. This consists of

7496 nodes and 14,693 linear triangles and is shown in Figure 3(b). The Mach contours with the

MUSCL scheme and the general scheme are presented in Figures 4(a) and 4(b). Once again the Mach

contours with the TVD scheme are not presented as they are almost identical with those of the

MUSCL scheme. The shock in front of the cylinder is much thicker with the general scheme. This is

due to the shock-capturing arti®cial viscosity used in the present example, namely equation (29)

given in the Appendix. As mentioned in the Appendix, the pressure-switch-type arti®cial viscosity

given by (30) has yielded a poor result and hence equation (29) has been used for shock capturing in

this case. This expression, being proportional to Dx3, spreads the shock over a greater number of

elements. Figure 4(c) shows a comparison of the pressure on the surface of the cylinder in the x2-

direction. While the overall result is satisfactory, there appear some sharp oscillations especially

where the shock impinges on the cylinder.

6.3. Supersonic viscous ¯ow past a ¯at plate

This test case, originally solved by Carter,54 is used to test the performance of the schemes for a

viscous supersonic ¯ow situation and requires the solution of the full Navier±Stokes equations. This

problem consists of a Mach 3 ¯ow over a ¯at plate at a Reynolds number of 1000 based on the length
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of the plate. The Prandtl number is taken as 0�72. The temperature of the plate is assumed constant

and equal to the stagnation temperature TS de®ned as

TS �
1

�gÿ 1�M21
1� gÿ 1

2
M2
1

� �
; g � 1�4: �23�

The dynamic viscosity m is assumed to vary with the temperature according to Sutherland's

semiempirical equation

m
mr

� T � S0

T � S0

T

Tr

� �1�5
: �24�

Figure 5(a) shows the structured mesh used in the analysis with 6750 nodes and 13,172 linear

triangular elements. The mesh is graded in such a way as to have enough layers of nodes in the

boundary layer. The ®rst layer of nodes is located at a vertical distance of 0�0004L from the plate,

where L is the length of the plate. This problem has been solved by the general scheme and the

MUSCL approach. Figures 5(b) and 5(c) show the pressure contours and Mach contours with the

general scheme, while those with the MUSCL scheme look similar and hence are not shown. Figures

6(a) and 6(b) show a comparison of the pressure along the plate and the u1-velocity pro®le at the exit.

The results of Carter54 are also plotted. Barring a difference in the pressure distribution near the

leading edge of the plate, there is overall agreement of the results between the general scheme and the

MUSCL approach. It can be observed from the velocity pro®le that a more re®ned mesh is needed in

the shock region where the velocity by the schemes varies less rapidly than Carter's.

Figure 3. Inviscid shock interaction problem: (a) schematic diagram of ¯ow domain; (b) ®fth adapted mesh used in analysis
(7496 nodes, 14,693 elements)
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6.4. Hypersonic viscous ¯ow past a ¯at plate

The previous example deals with a supersonic ¯ow situation at a somewhat low Reynolds number.

The present example is a more severe test case and involves viscous ¯ow past a ¯at plate at Mach 4

and a Reynolds number of 46106 based on the length of the plate. The freestream temperature is

®xed at 392�4 �R and the Prandtl number is 0�75. The ¯at plate is assumed to be adiabatic in this case.

The severity of the problem requires that more nodes and elements be taken close to the solid wall

Figure 4. Results for inviscid shock interaction problem: (a) Mach contours with MUSCL; (b) Mach contours with general
algorithm; (c) pressure distribution on cylinder in x2-direction
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especially in the normal direction. As a result, highly stretched elements have to be used near the

walls which rapidly reduce the speed of convergence to the steady state solution. The mesh used here

is a structured grid with 1016101 nodes and 20,000 elements. The aspect ratio in the ®rst layer above

the wall increases from 0�0001=0�005� 1=50 at the leading edge to 0�0001=0�017525� 1=175�25 at

the trailing edge. The grid spacing in the normal direction changes in a graded manner. The mesh is

shown in Figure 7(a). The most important issue in this example is the representation of the boundary

layer, which can be gauged from the velocity pro®le at any section. A similarity solution for this case

has been obtained by Van Driest55 in terms of a non-dimensional variable

y� � x2

x1

�p Rex1
�; �25�

where Rex1
� r1U1x1=m1. Figure 7(b) shows a comparison of the non-dimensional velocity pro®le

in terms of y* obtained by the general scheme, the MUSCL approach and the TVD approach at

x1� 0�5 The pro®les at other sections are identical with the above. The similarity solution of Van

Driest55 is also plotted. It can be observed that for this example the general scheme slightly

underpredicts the boundary layer thickness as compared with the other two schemes.

6.5. Hypersonic viscous ¯ow over a compression corner

The last of the viscous ¯ow cases consists of a hypersonic ¯ow over a compression corner of 24�

angle. The freestream is at a Mach number of 14�1 and the Reynolds number is 103,680 based on a

¯at plate length of 1�44 ft. The temperature of the ¯uid in the freestream is 160 �R and the local

Prandtl number is constant at a value of 0�72. The temperature of the wall is ®xed at 535 �R. The

Reynolds number is low enough to ensure that the ¯ow is laminar and the free stream temperature is

Figure 5. Viscous ¯ow past a ¯at plate, Re� 1000, M� 3: The contours obtained by the general and special purpose schemes
are identical (a) mesh used (6750 nodes, 13,172 elements); (b) pressure contours with general algorithm; (c) Mach contours

with general algorithm
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low enough so that there are no signi®cant real gas effects. The presence of a leading edge shock, a

thin boundary layer on the ramp and shock±shock and shock±boundary layer interaction makes this

problem computationally challenging for any numerical scheme designed to solve the Navier±Stokes

equations. A schematic diagram of the problem with details of the ¯ow behaviour is shown in Figure

8(a). The structured mesh with 1116101 nodes is shown in Figure 8(b). The 106101 node extension

of the mesh ahead of the ¯at plate was found to be necessary to remove oscillations close to the

leading edge. Figures 9(a) and 9(b) show the pressure coef®cient contours with the general scheme

and the MUSCL approach respectively. Similarly, Figures 9(c) and 9(d) show the Mach contours

obtained by the same. The corresponding plots with the TVD approach look very much like those by

the MUSCL approach and hence are not presented here. Similarly to the shock interaction problem,

Figure 6. Comparison of results for Carter problem: (a) pressure distribution along plate; (b) velocity pro®le at exit section

HIGH-SPEED FLOWS WITH SHOCKS 71

# 1998 John Wiley & Sons, Ltd. INT. J. NUMER. METH. FLUIDS, VOL. 27: 57±80 (1998)



in this case also the shocks are much thicker with the general scheme than the MUSCL scheme. This

shows the inferiority of the shock capturing used with the general scheme. The best way to examine

the solutions for this problem is to compare the wall coef®cients Cp, Cf and Ch. The following

de®nitions are used in this work:

Cp � log
50pu

r1u21=2

� �
; Cf � 50

tw

r1u21=2

� �
; Ch � log

1000qw

r1u1�H1Hw�
� �

; �26�

where the subscripts `w' and `?' refer to the wall and the freestream conditions respectively. Here

the wall shear stress and heat transfer rate are de®ned as

tw � t
�n�
2 n1 ÿ t

�n�
1 n2 � �t21n1 � t22n2�n1 ÿ �t11n1 � t12n2�n2; �27�

qw � @T=@n � HT �n; �28�

Figure 7. Hypersonic viscous ¯ow past a ¯at plate, Re� 46106, M� 4: (a) mesh used (10,201 nodes, 20,000 elements); (b)
comparison of velocity pro®les with analytical solution at x1� 0�5
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where n� (n1, n2) and t
�n�
1 and t

�2�
2 are the surface tractions in the direction n. Figures 10(a)±10(c)

show the pressure, skin friction and heat transfer coef®cients obtained by the different methods.

These plots also include the results obtained by Rudy et al.56 using the structured mesh ¯ow solver

CFL3D. Signi®cant differences can be observed between the general scheme and the rest of the

schemes especially in regions close to the separation point and the point of peak pressure. From

Figures 10(b) and 10(c) we observe that the general scheme underpredicts the skin friction and heat

transfer coef®cients near the reattachment point as compared with the MUSCL, TVD and CFL3D. A

better shock-capturing scheme needs to be used with the general scheme to achieve better results, as

any poor performance of the shock-capturing technique in the boundary layer or shock±boundary

layer interaction region will adversely affect the solution.

Figure 8. Hypersonic viscous ¯ow over a 24� compression corner, Re� 103,680, M� 14�1: (a) ¯ow domain characteristics; (b)
mesh used (11,211 nodes, 22,000 elements)
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7. CONCLUSIONS

In the present work we have made an effort to compare the performance of two different types of

schemes designed to solve the Navier±Stokes equations for high-speed ¯ows with shocks, via a

number of examples. The ®rst of these two classes of schemes is based on a general algorithm which

has been recently introduced and proved to be suitable for a variety of problems ranging from fully

incompressible through subsonic to supersonic ¯ow situations. The second class of algorithms, based

on the concepts of ¯ux difference splitting and Riemann solvers, has been proved to yield good

solutions for compressible ¯ow problems in supersonic and hypersonic cases in particular. From the

test cases presented here, which mostly deal with very-high-speed ¯ows, it is observed that the

performance of the general scheme is satisfactory on the whole and yields results comparable with

those of the special purpose schemes. For hypersonic cases with Mach numbers as high as 14 the

general scheme predictions deviate slightly from those obtained by the special purpose schemes. One

possible explanation is that the general scheme needs to employ a more ef®cient shock-capturing

technique that can produce sharp shocks. It is widely recognized that the ability of Riemann solvers to

deal with shocks is superior to that of arti®cial viscosity schemes. Further, the TVD and MUSCL

schemes employ tools such as entropy ®xing which the general scheme does not speci®cally impose.

This could have a signi®cant effect on the convergence of the scheme. Thus for very-high-speed

¯ows one would be inclined to favour the special purpose schemes. However, a bad performance of

these schemes is possible when they are directly applied to nearly incompressible ¯ows, in which

region the general scheme performs well. The application of the anisotropic arti®cial diffusion

method along with the general scheme seems to yield improved Mach contours for the case of an

inviscid supersonic ¯ow past a cylinder described in our ®rst example and hence it could be

considered worthwhile to apply this method to other examples considered in this work.

Figure 9. Comparison of (a, b) iso-Cp and (c, d) iso-Mach contours with (a, c) general scheme and (b, d) MUSCL approach
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An important issue in this comparison is the computational cost. The TVD and MUSCL schemes

use about twice as much computational time as the general scheme for each time step because of the

Riemann solver. Thus the speed of computation is an advantage for the general scheme. Further, the

extension of the general scheme to 3D is more straightforward than the extension of the TVD and

MUSCL schemes to 3D. As mentioned earlier, truly multidimensional upwind methods on

unstructured grids are still in the stage of development.

Finally, the fact that the general scheme, which performs well in the low-Mach-number range and

indeed in the transonic range, can also achieve results close to those of specialized schemes as shown

Figure 10. Hypersonic viscous ¯ow past a compression corner: (a) coef®cient comparison of pressure, (b) skin friction
coef®cient
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in this paper is remarkable. It therefore seems worthwhile to concentrate on more ef®cient shock-

capturing techniques to extend its use and some such work is now in progress.
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APPENDIX

The most signi®cant difference between the general purpose and special algorithms described earlier

is the way in which discontinuities in ¯ow are dealt with. Removing the high-frequency oscillations

generated by the second-order schemes around discontinuities is of greatest importance in obtaining

accurate numerical results for problems involving strong shocks. An extensive comparison of

different approaches for treating the discontinuities and their relative merits and demerits are

presented by Woodward and Collela.57 In general, three major approaches are available: the arti®cial

viscosity method, Godunov's approach and linear hybridization. While the general algorithm makes

use of the arti®cial viscosity concept, the special purpose schemes are based on Godunov's approach

for dealing with shocks.

The arti®cial viscosity method is the simplest of all the above. Originally suggested by von

Neumann and Richtmeyer,58 this method consists of representing the discontinuity as a narrow region

of steep gradients in the ¯ow variables. This is done by adding some arti®cial dissipation terms that

mimic the action of viscosity in the neighbourhood of shocks. Other signi®cant developments in this

area are those of Lapidus,59 McCormack and Baldwin,60 Steger61 and Jameson and co-workers.62,63

Because these methods smear the discontinuities over three or more zones, ®ne grids are necessary to

obtain narrow shocks.

Figure 10. Hypersonic viscous ¯ow past a compression corner: (c) heat transfer coef®cient along wall
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The Godunov approach, which was discussed earlier, introduces explicit non-linearity into the

discretization by approximating a hydrodynamic ¯ow by a large number of constant states,

computing their interactions exactly by using a Riemann solution and averaging the results in a

conservative manner. While the advantage of this method is the accurate and well-behaved treatment

of shock discontinuities, its main disadvantage is the complexity and the relatively larger amount of

CPU time required as compared with the arti®cial viscosity method and the linear hybridization

method.

Woodward and Collela's57 investigation of the performance of the three approaches suggests that

the Godunov method achieves the highest accuracy by means of elaborate calculations of the ¯uxes at

zone interfaces near discontinuities. However, this complicates and slows down the scheme

considerably. The arti®cial viscosity method is the simplest and fastest in terms of CPU time, but to

achieve the same accuracy, the grid needs to be re®ned by at least a factor of two in each dimension

and in time. However, considering the fact that the arti®cial viscosity method is much faster than the

Godunov approach, it is still possible to achieve the same accuracy on a re®ned mesh in the same

time.

While the implementation of Godunov's approach has been discussed in the special purpose

schemes, the arti®cial viscosity method used in the general scheme is discussed below.

McCormack and Baldwin60 suggested the following form of arti®cial viscosity for shock

capturing:

�Un�1
s ÿ �Un�1

Dt
� @

@xi

eDx3 juj � c

p

���� @2p

@x2
i

���� @ �Un

@xi

� �
: �29�

Here �Un�1 is the solution at time step n� 1, �Un�1
s is the modi®ed solution at time step n� 1 after

adding arti®cial viscosity and e is a user-de®ned factor (0�5±2�5). However, when applied to the FEM,

the evaluation of @2p=@x2
i involves a variational recovery and could be expensive. Thus Peraire et al.64

made the following modi®cation based on some approximation:

ML

�Un�1
s ÿ �Un�1

Dt

� �
� e

Pnel

e�1

Se

Dte

�M ÿML� �Un: �30�

M and ML are the consistent and lumped mass matrices respectively and �Un is the solution at time n.

Se is an element pressure switch, which is the mean of the nodal values Si, computed as

Si �
jPk�pi ÿ pk�jP

k j�pi ÿ pk�j
: �31�

Si� 1 when the pressure has a local extremum at node i and Si� 0 when the pressure at node i is an

average of pk. This form of arti®cial viscosity yields reasonably good shock properties for a wide

range of problems but suffers from the disadvantage that Si could have non-zero values even in areas

of smoothly varying pressure. This means that an additional diffusion is added even in the smooth

¯ow regions which may not be very large for subsonic and supersonic cases. However, for hypersonic

¯ow situations, because of the presence of very strong shocks, the amount of dissipation added would

be more (a higher value of e is prescribed for high-Mach ¯ows). This could seriously pollute the

velocity and density ®elds and lead to a diffuse solution. This has been observed in the present

exercise especially while solving the hypersonic ¯ow problems. It has also been observed that the

second gradient of pressure acts as a better switch than the switch described above. Thus switching

over to the original arti®cial viscosity expression, namely equation (29) given by McCormack and

Baldwin,60 which uses the second gradient of pressure as a switch, has proved to be useful in

obtaining meaningful results for the hypersonic ¯ow cases. As the evaluation of @2p=@x2
i is expensive,
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this form of arti®cial viscosity has been used only for the cases where the other one did not yield

acceptable results. These cases are (i) shock interaction on a cylinder and (ii) hypersonic viscous ¯ow

over a compression corner. Another method towards which efforts are currently being directed is the

anisotropic arti®cial diffusion method of Reference 28. Its implementation in the general scheme for

the case of supersonic inviscid ¯ow past a cylinder seems to provide improved Mach contours. Its

application to other examples in the present work is currently being pursued.
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